Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Analytics database workloads often contain queries that are executed repeatedly. Existing optimization techniques generally prioritize keeping optimization cost low, normally well below the time it takes to execute a single instance of a query. If a given query is going to be executed thousands of times, could it be worth investing significantly more optimization time? In contrast to traditional online query optimizers, we propose an offline query optimizer that searches a wide variety of plans and incorporates query execution as a primitive. Our offline query optimizer combines variational auto-encoders with Bayesian optimization to find optimized plans for a given query. We compare our technique to the optimal plans possible with PostgreSQL and recent RL-based systems over several datasets, and show that our technique finds faster query plans.more » « lessFree, publicly-accessible full text available June 17, 2026
- 
            Abstract Alternative splicing (AS) of pre-mRNA plays a crucial role in tissue-specific gene regulation, with disease implications due to splicing defects. Predicting and manipulating AS can therefore uncover new regulatory mechanisms and aid in therapeutics design. We introduce TrASPr+BOS, a generative AI model with Bayesian Optimization for predicting and designing RNA for tissue-specific splicing outcomes. TrASPr is a multi-transformer model that can handle different types of AS events and generalize to unseen cellular conditions. It then serves as an oracle, generating labeled data to train a Bayesian Optimization for Splicing (BOS) algorithm to design RNA for condition-specific splicing outcomes. We show TrASPr+BOS outperforms existing methods, enhancing tissue-specific AUPRC by up to 2.4 fold and capturing tissue-specific regulatory elements. We validate hundreds of predicted novel tissue-specific splicing variations and confirm new regulatory elements using dCas13. We envision TrASPr+BOS as a light yet accurate method researchers can probe or adopt for specific tasks.more » « lessFree, publicly-accessible full text available March 20, 2026
- 
            High-dimensional Bayesian optimization (BO) tasks such as molecular design often require > 10,000 function evaluations before obtaining meaningful results. While methods like sparse variational Gaussian processes (SVGPs) reduce computational requirements in these settings, the underlying approximations result in suboptimal data acquisitions that slow the progress of optimization. In this paper we modify SVGPs to better align with the goals of BO: targeting informed data acquisition rather than global posterior fidelity. Using the framework of utility-calibrated variational inference, we unify GP approximation and data acquisition into a joint optimization problem, thereby ensuring optimal decisions under a limited computational budget. Our approach can be used with any decision-theoretic acquisition function and is compatible with trust region methods like TuRBO. We derive efficient joint objectives for the expected improvement and knowledge gradient acquisition functions in both the standard and batch BO settings. Our approach outperforms standard SVGPs on high-dimensional benchmark tasks in control and molecular design.more » « lessFree, publicly-accessible full text available December 9, 2025
- 
            Free, publicly-accessible full text available December 9, 2025
- 
            We prove that black-box variational infer- ence (BBVI) with control variates, particularly the sticking-the-landing (STL) estima- tor, converges at a geometric (traditionally called βlinearβ) rate under perfect variational family specification. In particular, we prove a quadratic bound on the gradient variance of the STL estimator, one which encompasses misspecified variational families. Combined with previous works on the quadratic variance condition, this directly implies convergence of BBVI with the use of projected stochastic gradient descent. For the projection operator, we consider a domain with triangular scale matrices, which the pro jection onto is computable in O(π) time, where π is the dimensionality of the target posterior. We also improve existing analysis on the reg- ular closed-form entropy gradient estimators, which enables comparison against the STL estimator, providing explicit non-asymptotic complexity guarantees for both.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available